Psychiatrie pro praxi – 3/2019

www.psychiatriepropraxi.cz  / Psychiatr. praxi 2020; 21(e3): e3–e14 / PSYCHIATRIE PRO PRAXI e13 PŘEHLEDOVÉ ČLÁNKY Klinický význam genetického testování u pacientů s poruchou autistického spektra 52. Chérot E, Keren B, Dubourg C, et al. Using medical exome sequencing to identify the causes of neurodevelopmental disorders: Experience of 2 clinical units and 216 patients. Clin Genet 2018; 93: 567–576. doi: 10.1111/cge.13102. 53. Tammimies K, Marshall CR, Walker S, et al. Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Di- sorder. JAMA 2015; 314: 895–903. doi: 10.1001/jama.2015.10078 54. Huang Y, Zhao Y, Ren Y, et al. Identifying Genomic Variations in Monozygotic Twins Discordant for Autism Spectrum Disorder Using Whole-Genome Sequencing. Mol Ther Nucleic Acids 2019; 14: 204–211. doi: 10.1016/j.omtn.2018.11.015. 55. Michaelson J J, Shi Y, Gujral M, et al. Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation. Cell 2012; 151: 1431–1442. doi: 10.1016/j.cell.2012.11.019. 56. Al-Mubarak B, Abouelhoda M, Omar A, et al. Whole exome sequencing reveals inheri- ted and de novo variants in autism spectrum disorder: a trio study from Saudi families. Sci Rep 2017; 7: 5679. doi: 10.1038/s41598-017-06033-1. 57. Hu VW, Sarachana T, Kim KS, et al. Gene expression profiling differentiates autism ca- se-controls and phenotypic variants of autism spectrum disorders: evidence for circadian rhythm dysfunction in severe autism. Autism Res 2009; 2: 78–97. doi: 10.1002/aur.73. 58. Menashe I, Grange P, Larsen EC, et al. Co-expression Profiling of Autism Genes in the Mouse Brain. PLoS Comput Biol 2013; 9(7): e1003128. doi: 10.1371/journal.pcbi.1003128. 59. Yu H, Zhang Z, Liu J, et al. Association study between genetic variants in vitamin D me- tabolism related genes and childhood autism spectrum disorder. Metab Brain Dis 2020. doi: 10.1007/s11011-020-00570-x. 60. Fazzari MJ, Greally JM. Introduction to Epigenomics and Epigenome-Wide. Methods Mol Biol 2010; 620: 243–265. doi: 10.1007/978-1-60761-580-4_7. 61. Mundalil Vasu M, Anitha A, Thanseem I, et al. SerummicroRNA profiles in children with autism. Mol Autism 2014; 5: 40. doi: 10.1186/2040-2392-5-40. 62. Hicks SD, Middleton FA. A comparative review of microRNA expression patterns in au- tism spectrum disorder. Front Psychiatry 2016; 7: 176. doi: 10.3389/fpsyt.2016.00176. 63. Salloum-Asfar S, Satheesh NJ, Abdulla SA. Circulating miRNAs, Small but Promising Biomarkers for Autism Spectrum Disorder. Front Mol Neurosci 2019; 12: 40. doi: 10.3389/ fnmol.2019.00253/full. 64. Wiśniowiecka-Kowalnik B, Nowakowska BA. Genetics and epigenetics of autism spec- trum disorder—current evidence in the field. J Appl Genet 2019; 60: 37–47. doi: 10.1007/ s13353-018-00480-w. 65. Frigaux A, Evrard R, Lighezzolo-Alnot J. L’ADI-R et l’ADOS face au diagnostic différen- tiel des troubles du spectre autistique : intérêts, limites et ouvertures. Encephale 2019; 45: 441–448. doi: 10.1016/j.encep.2019.07.002. 66. Elder J, Kreider C, Brasher S, et al. Clinical impact of early diagnosis of autism on the prognosis and parent-child relationships. Psychol Res Behav Manag 2017; 10: 283–292. doi: 10.2147/PRBM.S117499. 67. D’Abate L, Walker S, Yuen RKC, et al. Predictive impact of rare genomic copy number variations in siblings of individuals with autism spectrum disorders. Nat Commun 2019; 10: 5519. doi: 10.1038/s41467-019-13380-2. 68. Goddard MN, van Rijn S, Rombouts SARB. White matter microstructure in a genetica- lly defined group at increased risk of autism symptoms, and a comparison with idiopathic autism: an exploratory study. Brain Imaging Behav 2016; 10: 1280–1288. doi: 10.1007/s11682- 015-9496-z. 69. Aksglaede L, Link K, Giwercman A, et al. 47,XXY Klinefelter syndrome: Clinical characte- ristics and age-specific recommendations for medical management. Am J Med Genet C Semin Med Genet 2013; 163: 55–63. doi: 10.1002/ajmg.c.31349. 70. Srivastava S, Love-Nichols JA, Dies KA, et al. Meta-analysis and multidisciplinary con- sensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med 2019; 21: 2413–2421. doi: 10.1038/s41436- 019-0554-6. 71. Fridman C, Koiffmann CP. Origin of uniparental disomy 15 in patients with Prader-Willi or Angelman syndrome. Am J Med Genet 2000; 94: 249–253. doi: 10.1002/1096-8628(200 00918)94:3<249:aid-ajmg12>3.0.co; 2-x. 72. Balicza P, Varga NÁ, Bolgár B, et al. Comprehensive Analysis of Rare Variants of 101 Auti- sm-Linked Genes in a Hungarian Cohort of Autism Spectrum Disorder Patients. Front Ge- net 2019; 10: 434. doi: 10.3389/fgene.2019.00434/full. 73. Tran KT, Le VS, Bui http, et al. Genetic landscape of autism spectrum disorder in Viet- namese children. Sci Rep 2020; 10: 5034. doi: 10.1038/s41598-020-61695-8. 74. Husson T, Lecoquierre F, Cassinari K, et al. Rare genetic susceptibility variants assessment in autism spectrum disorder: detection rate and practical use. Transl Psychiatry 2020; 10: 77. doi: 10.1038/s41398-020-0760-7. 75. Abbeduto L, Thurman AJ, McDuffie A, et al. ASD Comorbidity in Fragile X Syndrome: Symptom Profile and Predictors of Symptom Severity in Adolescent and Young Adult Ma- les. Journal of Autism and Developmental Disorders 2019; 49: 960–977. doi: 10.1007/s10803- 018-3796-2. 76. Wulffaert J, Van Berckelaer-Onnes IA, Scholte EM. Autistic disorder symptoms in Rett syndrome. Autism 2009; 13: 567–581. doi: 10.1177/1362361309338184. 77. Vignoli A, La Briola F, Peron A, Turner K, Vannicola C, Saccani M, et al. Autism spectrum disorder in tuberous sclerosis complex: searching for risk markers. Orphanet J Rare Dis 2015; 10: 154. doi: 10.1186/s13023-015-0371-1.

RkJQdWJsaXNoZXIy NDA4Mjc=